This page contains Windows bias

About This Page

This page is part of the Azure documentation. It contains code examples and configuration instructions for working with Azure services.

Bias Analysis

Bias Types:
⚠️ windows_first
⚠️ windows_tools
Summary:
The documentation demonstrates a mild Windows bias. While most of the workflow is cross-platform (using QGIS, Python, PostgreSQL/PostGIS), Windows-specific tools and patterns are mentioned first or exclusively in some places. For example, Azure Storage Explorer (a Windows-centric tool) is recommended for uploading to Azure Blob Storage, and the guide assumes a Windows environment by referencing WSL (Windows Subsystem for Linux) for running Linux tools. There is no explicit Linux or macOS guidance for these steps, and the workaround for running rio-rgbify is described in the context of WSL rather than native Linux or macOS.
Recommendations:
  • Provide explicit instructions for Linux and macOS users, such as how to install and run rio-rgbify natively on those platforms.
  • Mention and provide alternatives to Azure Storage Explorer, such as the Azure CLI (az storage blob upload) or cross-platform tools like rclone.
  • When referencing WSL, clarify that the steps are for Windows users and provide equivalent native Linux/macOS commands where possible.
  • Ensure that any required tools or steps are described in a platform-agnostic way, or provide parallel instructions for each major OS.
  • Consider reordering instructions so that cross-platform or Linux-native approaches are presented first, or at least alongside Windows-specific guidance.
GitHub Create pull request

Scan History

Date Scan ID Status Bias Status
2025-07-12 23:44 #41 in_progress ❌ Biased
2025-07-12 00:58 #8 cancelled ✅ Clean
2025-07-10 05:06 #7 processing ✅ Clean

Flagged Code Snippets

sudo apt get update sudo apt get upgrade sudo apt install python3-pip pip install rio-rgbify PATH="$PATH:/home/<user /.local/bin" # The following two steps are only necessary when mounting an external hard drive or USB flash drive: sudo mkdir /mnt/f sudo mount -t drvfs D: /mnt/f rio rgbify -b -10000 -i 0.1 wa_1arc_v3_merged_3857.tif wa_1arc_v3_merged_3857_rgb.tif # The following steps are only necessary when unmounting an external hard drive or USB flash drive: cd \~ sudo umount /mnt/f/
import logging from wsgiref import headers import azure.functions as func import psycopg2 # Database to connect to DATABASE = { 'user': 'postgres', 'password': '{password}', 'host': 'localhost', 'port': '5432', 'database': '{database}' } def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') DATABASE_CONNECTION = None # get url parameters http://localhost:7071/api/tileserver?zoom={z}&x={x}&y={y} # http://localhost:7071/api/tileserver?zoom=16&x=10556&y=22870 zoom = int(req.params.get('zoom')) x = int(req.params.get('x')) y = int(req.params.get('y')) table = req.params.get('table') # calculate the envelope of the tile # Width of world in EPSG:3857 worldMercMax = 20037508.3427892 worldMercMin = -1 * worldMercMax worldMercSize = worldMercMax - worldMercMin # Width in tiles worldTileSize = 2 ** zoom # Tile width in EPSG:3857 tileMercSize = worldMercSize / worldTileSize # Calculate geographic bounds from tile coordinates # XYZ tile coordinates are in "image space" so origin is # top-left, not bottom right xmin = worldMercMin + tileMercSize * x xmax = worldMercMin + tileMercSize * (x + 1) ymin = worldMercMax - tileMercSize * (y + 1) ymax = worldMercMax - tileMercSize * y # Generate SQL to materialize a query envelope in EPSG:3857. # Densify the edges a little so the envelope can be # safely converted to other coordinate systems. DENSIFY_FACTOR = 4 segSize = (xmax - xmin)/DENSIFY_FACTOR sql01 = 'ST_Segmentize(ST_MakeEnvelope(' + str(xmin) + ', ' + str(ymin) + ', ' + str(xmax) + ', ' + str(ymax) + ', 3857), ' + str(segSize) +')' # Generate a SQL query to pull a tile worth of MVT data # from the table of interest. # Materialize the bounds # Select the relevant geometry and clip to MVT bounds # Convert to MVT format sql02 = 'WITH bounds AS (SELECT ' + sql01 + ' AS geom, ' + sql01 + '::box2d AS b2d), mvtgeom AS (SELECT ST_AsMVTGeom(ST_Transform(t.geom, 3857), bounds.b2d) AS geom, elev FROM contourlines_smooth t, bounds WHERE ST_Intersects(t.geom, ST_Transform(bounds.geom, 4326))) SELECT ST_AsMVT(mvtgeom.*) FROM mvtgeom' # Run tile query SQL and return error on failure conditions # Make and hold connection to database if not DATABASE_CONNECTION: try: DATABASE_CONNECTION = psycopg2.connect(**DATABASE) logging.info('Connected to database.') except (Exception, psycopg2.Error) as error: logging.error('ERROR: Cannot connect to database.') # Query for MVT with DATABASE_CONNECTION.cursor() as cur: cur.execute(sql02) if not cur: logging.error('ERROR: SQL Query failed.') pbf = cur.fetchone()[0] logging.info('Queried database') if zoom and x and y: return func.HttpResponse( # f"This HTTP triggered function executed successfully.\n\nzoom={zoom}\nx={x}\ny={y}\n\nxmin={xmin}\nxmax={xmax}\nymin={ymin}\nymax={ymax}\n\nsql01={sql01}\n\nsql02={sql02}", bytes(pbf), status_code=200, headers={"Content-type": "application/vnd.mapbox-vector-tile","Access-Control-Allow-Origin": "*"} ) else: return func.HttpResponse( "ERROR: Missing parameter!", status_code=400 )