This page contains Windows bias

About This Page

This page is part of the Azure documentation. It contains code examples and configuration instructions for working with Azure services.

Bias Analysis

Bias Types:
⚠️ powershell_heavy
⚠️ windows_first
⚠️ windows_tools
⚠️ missing_linux_example
Summary:
The documentation demonstrates a strong Windows bias. All command-line examples are shown in PowerShell, with Windows paths and prompts. Device management commands (e.g., Get-HcsGpuNvidiaSmi, Start-HcsGpuMPS) are specific to PowerShell and Windows. There are no Linux or cross-platform command examples, and Linux tools or shell usage are not mentioned. The workflow assumes a Windows client environment throughout.
Recommendations:
  • Provide equivalent Linux/bash command examples alongside PowerShell, using standard Linux shell prompts and paths.
  • Document how to connect to and manage the Azure Stack Edge Pro GPU device from a Linux client, including any required tools or differences.
  • Clarify whether device management commands (e.g., Get-HcsGpuNvidiaSmi, Start-HcsGpuMPS) are available or have equivalents on Linux, or if they are Windows-only.
  • Update the prerequisites and instructions to explicitly support Linux clients, not just Windows.
  • Where possible, use cross-platform tools and neutral language (e.g., 'terminal' instead of 'PowerShell interface') and avoid assuming C:\ paths.
  • If certain features are Windows-only, clearly state this and provide alternative guidance for Linux users.
GitHub Create pull request

Scan History

Date Scan ID Status Bias Status
2025-07-12 23:44 #41 in_progress ❌ Biased
2025-07-12 00:58 #8 cancelled ✅ Clean
2025-07-10 05:06 #7 processing ✅ Clean

Flagged Code Snippets

PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-db9vx Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance. ===========// CUT //===================// CUT //===================== > Windowed mode > Simulation data stored in video memory > Single precision floating point simulation > 1 Devices used for simulation GPU Device 0: "Turing" with compute capability 7.5 > Compute 7.5 CUDA device: [Tesla T4] 40960 bodies, total time for 10000 iterations: 170368.859 ms = 98.476 billion interactions per second = 1969.517 single-precision GFLOP/s at 20 flops per interaction PS C:\WINDOWS\system32>
[10.100.10.10]: PS>Get-HcsGpuNvidiaSmi K8S-1HXQG13CL-1HXQG13: Wed Mar 3 12:32:52 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 00002C74:00:00.0 Off | 0 | | N/A 38C P8 9W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ [10.100.10.10]: PS>
PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 NAME READY STATUS RESTARTS AGE cuda-sample1-vcznt 0/1 Completed 0 5m44s cuda-sample2-zkx4w 0/1 Completed 0 5m44s PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-vcznt Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance. ===========// CUT //===================// CUT //===================== > Windowed mode > Simulation data stored in video memory > Single precision floating point simulation > 1 Devices used for simulation GPU Device 0: "Turing" with compute capability 7.5 > Compute 7.5 CUDA device: [Tesla T4] 40960 bodies, total time for 10000 iterations: 154979.453 ms = 108.254 billion interactions per second = 2165.089 single-precision GFLOP/s at 20 flops per interaction PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-zkx4w Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance. ===========// CUT //===================// CUT //===================== > Windowed mode > Simulation data stored in video memory > Single precision floating point simulation > 1 Devices used for simulation GPU Device 0: "Turing" with compute capability 7.5 > Compute 7.5 CUDA device: [Tesla T4] 40960 bodies, total time for 10000 iterations: 154986.734 ms = 108.249 billion interactions per second = 2164.987 single-precision GFLOP/s at 20 flops per interaction PS C:\WINDOWS\system32>
PS>Get-HcsGpuNvidiaSmi K8S-1HXQG13CL-1HXQG13: Mon Mar 3 21:59:55 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 0000E00B:00:00.0 Off | 0 | | N/A 37C P8 9W / 70W | 28MiB / 15109MiB | 0% E. Process | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 144443 C nvidia-cuda-mps-server 25MiB | +-----------------------------------------------------------------------------+
Get-HcsGpuNvidiaSmi
PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 No resources found.
[10.100.10.10]: PS>Start-HcsGpuMPS K8S-1HXQG13CL-1HXQG13: Set compute mode to EXCLUSIVE_PROCESS for GPU 00002C74:00:00.0. All done. Created nvidia-mps.service [10.100.10.10]: PS>
PS C:\WINDOWS\system32> kubectl -n mynamesp1 delete -f C:\gpu-sharing\k8-gpusharing.yaml job.batch "cuda-sample1" deleted job.batch "cuda-sample2" deleted PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 No resources found. PS C:\WINDOWS\system32> kubectl -n mynamesp1 apply -f C:\gpu-sharing\k8-gpusharing.yaml job.batch/cuda-sample1 created job.batch/cuda-sample2 created PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 NAME READY STATUS RESTARTS AGE cuda-sample1-vcznt 1/1 Running 0 21s cuda-sample2-zkx4w 1/1 Running 0 21s PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1; kubectl -n mynamesp1 describe job.batch/cuda-sample2 Name: cuda-sample1 Namespace: mynamesp1 Selector: controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e Labels: controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e job-name=cuda-sample1 Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1... Parallelism: 1 Completions: 1 Start Time: Wed, 03 Mar 2021 21:51:51 -0800 Pods Statuses: 1 Running / 0 Succeeded / 0 Failed Pod Template: Labels: controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e job-name=cuda-sample1 Containers: cuda-sample-container1: Image: nvidia/samples:nbody Port: <none> Host Port: <none> Command: /tmp/nbody Args: -benchmark -i=10000 Environment: NVIDIA_VISIBLE_DEVICES: 0 Mounts: <none> Volumes: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 46s job-controller Created pod: cuda-sample1-vcznt Name: cuda-sample2 Namespace: mynamesp1 Selector: controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29 Labels: controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29 job-name=cuda-sample2 Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1... Parallelism: 1 Completions: 1 Start Time: Wed, 03 Mar 2021 21:51:51 -0800 Pods Statuses: 1 Running / 0 Succeeded / 0 Failed Pod Template: Labels: controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29 job-name=cuda-sample2 Containers: cuda-sample-container2: Image: nvidia/samples:nbody Port: <none> Host Port: <none> Command: /tmp/nbody Args: -benchmark -i=10000 Environment: NVIDIA_VISIBLE_DEVICES: 0 Mounts: <none> Volumes: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 47s job-controller Created pod: cuda-sample2-zkx4w PS C:\WINDOWS\system32>
PS>Get-HcsGpuNvidiaSmi K8S-1HXQG13CL-1HXQG13: Mon Mar 3 21:54:50 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 0000E00B:00:00.0 Off | 0 | | N/A 45C P0 68W / 70W | 242MiB / 15109MiB | 100% E. Process | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 144377 M+C /tmp/nbody 107MiB | | 0 N/A N/A 144379 M+C /tmp/nbody 107MiB | | 0 N/A N/A 144443 C nvidia-cuda-mps-server 25MiB | +-----------------------------------------------------------------------------+
[10.100.10.10]: PS>Get-HcsGpuNvidiaSmi K8S-1HXQG13CL-1HXQG13: Wed Mar 3 12:24:27 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 00002C74:00:00.0 Off | 0 | | N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ [10.100.10.10]: PS>
PS C:\WINDOWS\system32> kubectl apply -f -n mynamesp1 C:\gpu-sharing\k8-gpusharing.yaml job.batch/cuda-sample1 created job.batch/cuda-sample2 created PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 NAME READY STATUS RESTARTS AGE cuda-sample1-27srm 1/1 Running 0 28s cuda-sample2-db9vx 1/1 Running 0 27s PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1; kubectl -n mynamesp1 describe job.batch/cuda-sample2 Name: cuda-sample1 Namespace: mynamesp1 Selector: controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f Labels: controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f job-name=cuda-sample1 Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1... Parallelism: 1 Completions: 1 Start Time: Wed, 03 Mar 2021 12:25:34 -0800 Pods Statuses: 1 Running / 0 Succeeded / 0 Failed Pod Template: Labels: controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f job-name=cuda-sample1 Containers: cuda-sample-container1: Image: nvidia/samples:nbody Port: <none> Host Port: <none> Command: /tmp/nbody Args: -benchmark -i=10000 Environment: NVIDIA_VISIBLE_DEVICES: 0 Mounts: <none> Volumes: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 60s job-controller Created pod: cuda-sample1-27srm Name: cuda-sample2 Namespace: mynamesp1 Selector: controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381 Labels: controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381 job-name=cuda-sample2 Annotations: kubectl.kubernetes.io/last-applied-configuration: {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1... Parallelism: 1 Completions: 1 Start Time: Wed, 03 Mar 2021 12:25:35 -0800 Pods Statuses: 1 Running / 0 Succeeded / 0 Failed Pod Template: Labels: controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381 job-name=cuda-sample2 Containers: cuda-sample-container2: Image: nvidia/samples:nbody Port: <none> Host Port: <none> Command: /tmp/nbody Args: -benchmark -i=10000 Environment: NVIDIA_VISIBLE_DEVICES: 0 Mounts: <none> Volumes: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 60s job-controller Created pod: cuda-sample2-db9vx PS C:\WINDOWS\system32>
[10.100.10.10]: PS>Get-HcsGpuNvidiaSmi K8S-1HXQG13CL-1HXQG13: Wed Mar 3 12:26:41 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 On | 00002C74:00:00.0 Off | 0 | | N/A 64C P0 69W / 70W | 221MiB / 15109MiB | 100% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 197976 C /tmp/nbody 109MiB | | 0 N/A N/A 198051 C /tmp/nbody 109MiB | +-----------------------------------------------------------------------------+ [10.100.10.10]: PS>
PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 NAME READY STATUS RESTARTS AGE cuda-sample1-27srm 1/1 Running 0 70s cuda-sample2-db9vx 1/1 Running 0 69s PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1 NAME READY STATUS RESTARTS AGE cuda-sample1-27srm 0/1 Completed 0 2m54s cuda-sample2-db9vx 0/1 Completed 0 2m53s PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-27srm Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance. ===========// CUT //===================// CUT //===================== > Windowed mode > Simulation data stored in video memory > Single precision floating point simulation > 1 Devices used for simulation GPU Device 0: "Turing" with compute capability 7.5 > Compute 7.5 CUDA device: [Tesla T4] 40960 bodies, total time for 10000 iterations: 170398.766 ms = 98.459 billion interactions per second = 1969.171 single-precision GFLOP/s at 20 flops per interaction PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32> kubectl delete -f 'C:\gpu-sharing\k8-gpusharing.yaml' -n mynamesp1 deployment.apps "cuda-sample1" deleted deployment.apps "cuda-sample2" deleted PS C:\WINDOWS\system32>