Raw New Markdown
Generating updated version of doc...
Rendered New Markdown
Generating updated version of doc...
---
title: MapReduce with Apache Hadoop on HDInsight
description: Learn how to run Apache MapReduce jobs on Apache Hadoop in HDInsight clusters.
ms.service: azure-hdinsight
ms.topic: how-to
ms.custom: hdinsightactive
author: hareshg
ms.author: hgowrisankar
ms.reviewer: nijelsf
ms.date: 01/02/2025
---
# Use MapReduce in Apache Hadoop on HDInsight
Learn how to run MapReduce jobs on HDInsight clusters.
## Example data
HDInsight provides various example data sets, which are stored in the `/example/data` and `/HdiSamples` directory. These directories are in the default storage for your cluster. In this document, we use the `/example/data/gutenberg/davinci.txt` file. This file contains the notebooks of `Leonardo da Vinci`.
## Example MapReduce
An example MapReduce word count application is included with your HDInsight cluster. This example is located at `/example/jars/hadoop-mapreduce-examples.jar` on the default storage for your cluster.
The following Java code is the source of the MapReduce application contained in the `hadoop-mapreduce-examples.jar` file:
```java
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
For instructions to write your own MapReduce applications, see [Develop Java MapReduce applications for HDInsight](apache-hadoop-develop-deploy-java-mapreduce-linux.md).
## Run the MapReduce
HDInsight can run HiveQL jobs by using various methods. Use the following table to decide which method is right for you, then follow the link for a walkthrough.
| **Use this**... | **...to do this** | ...from this **client operating system** |
|:--- |:--- |:--- |:--- |
| [SSH](apache-hadoop-use-mapreduce-ssh.md) |Use the Hadoop command through **SSH** |Linux, Unix, `macOS X`, or Windows |
| [Curl](apache-hadoop-use-mapreduce-curl.md) |Submit the job remotely by using **REST** |Linux, Unix, `macOS X`, or Windows |
| [Windows PowerShell](apache-hadoop-use-mapreduce-powershell.md) |Submit the job remotely by using **Windows PowerShell** |Windows |
## Next steps
To learn more about working with data in HDInsight, see the following documents:
* [Develop Java MapReduce programs for HDInsight](apache-hadoop-develop-deploy-java-mapreduce-linux.md)
* [Use Apache Hive with HDInsight](./hdinsight-use-hive.md)