Raw New Markdown
Generating updated version of doc...
Rendered New Markdown
Generating updated version of doc...
---
title: Switch activity in Azure Data Factory
description: The Switch activity allows you to control the processing flow based on a condition.
author: kromerm
ms.author: makromer
ms.reviewer: whhender
ms.subservice: orchestration
ms.topic: conceptual
ms.date: 09/26/2024
ms.custom:
- devx-track-azurepowershell
- sfi-ropc-nochange
---
# Switch activity in Azure Data Factory
[!INCLUDE[appliesto-adf-asa-md](includes/appliesto-adf-asa-md.md)]
The Switch activity provides the same functionality that a switch statement provides in programming languages. It evaluates a set of activities corresponding to a case that matches the condition evaluation.
## Create a Switch activity with UI
To use a Switch activity in a pipeline, complete the following steps:
1. Search for _Switch_ in the pipeline Activities pane, and add a Switch activity to the pipeline canvas.
1. Select the Switch activity on the canvas if it isn't already selected, and its **Activities** tab, to edit its details.
1. Enter an expression for the Switch to evaluate. This can be any combination of dynamic [expressions, functions](control-flow-expression-language-functions.md), [system variables](control-flow-system-variables.md), or [outputs from other activities](how-to-expression-language-functions.md#examples-of-using-parameters-in-expressions).
1. Select **Add case** to add more cases. If no case matches, the Default case activity is used.
1. Enter the value for the new case.
1. Select the Edit button to add activities that are executed when the expression evaluates to the matched case.
:::image type="content" source="media/control-flow-switch-activity/switch-activity-ui.png" alt-text="Shows the UI for a Switch activity with numbered indications of each step to configure it.":::
## JSON syntax
```json
{
"name": "<Name of the activity>",
"type": "Switch",
"typeProperties": {
"expression": {
"value": "<expression that evaluates to some string value>",
"type": "Expression"
},
"cases": [
{
"value": "<string value that matches expression evaluation>",
"activities": [
{
"<Activity 1 definition>"
},
{
"<Activity 2 definition>"
},
{
"<Activity N definition>"
}
]
}
],
"defaultActivities": [
{
"<Activity 1 definition>"
},
{
"<Activity 2 definition>"
},
{
"<Activity N definition>"
}
]
}
}
```
## Type properties
Property | Description | Allowed values | Required
-------- | ----------- | -------------- | --------
name | Name of the switch activity. | String | Yes
type | Must be set to *Switch** | String | Yes
expression | Expression that must evaluate to string value | Expression with result type string | Yes
cases | Set of cases that contain a value and a set of activities to execute when the value matches the expression evaluation. Must provide at least one case. There's a max limit of 25 cases. | Array of Case Objects | Yes
defaultActivities | Set of activities that are executed when the expression evaluation isn't satisfied. | Array of Activities | Yes
## Example
The pipeline in this example copies data from an input folder to an output folder. The pipeline parameter **routeSelection** determines the output folder.
> [!NOTE]
> This section provides JSON definitions and sample PowerShell commands to run the pipeline. For a walkthrough with step-by-step instructions to create a Data Factory pipeline by using Azure PowerShell and JSON definitions, see [tutorial: create a data factory by using Azure PowerShell](quickstart-create-data-factory-powershell.md).
### Pipeline with Switch activity (Adfv2QuickStartPipeline.json)
```json
{
"name": "Adfv2QuickStartPipeline",
"properties": {
"activities": [
{
"name": "MySwitch",
"type": "Switch",
"typeProperties": {
"expression": {
"value": "@pipeline().parameters.routeSelection",
"type": "Expression"
},
"cases": [
{
"value": "1",
"activities": [
{
"name": "CopyFromBlobToBlob1",
"type": "Copy",
"inputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.inputPath"
},
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.outputPath1",
},
"type": "DatasetReference"
}
],
"typeProperties": {
"source": {
"type": "BlobSource"
},
"sink": {
"type": "BlobSink"
}
}
}
]
},
{
"value": "2",
"activities": [
{
"name": "CopyFromBlobToBlob2",
"type": "Copy",
"inputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.inputPath",
},
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.outputPath2",
},
"type": "DatasetReference"
}
],
"typeProperties": {
"source": {
"type": "BlobSource"
},
"sink": {
"type": "BlobSink"
}
}
}
]
},
{
"value": "3",
"activities": [
{
"name": "CopyFromBlobToBlob3",
"type": "Copy",
"inputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.inputPath",
},
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "BlobDataset",
"parameters": {
"path": "@pipeline().parameters.outputPath3",
},
"type": "DatasetReference"
}
],
"typeProperties": {
"source": {
"type": "BlobSource"
},
"sink": {
"type": "BlobSink"
}
}
}
]
},
],
"defaultActivities": []
}
}
],
"parameters": {
"inputPath": {
"type": "String"
},
"outputPath1": {
"type": "String"
},
"outputPath2": {
"type": "String"
},
"outputPath3": {
"type": "String"
},
"routeSelection": {
"type": "String"
}
}
}
}
```
### Azure Storage linked service (AzureStorageLinkedService.json)
```json
{
"name": "AzureStorageLinkedService",
"properties": {
"type": "AzureStorage",
"typeProperties": {
"connectionString": "DefaultEndpointsProtocol=https;AccountName=<Azure Storage account name>;AccountKey=<Azure Storage account key>"
}
}
}
```
### Parameterized Azure Blob dataset (BlobDataset.json)
The pipeline sets the **folderPath** to the value of either **outputPath1** or **outputPath2** parameter of the pipeline.
```json
{
"name": "BlobDataset",
"properties": {
"type": "AzureBlob",
"typeProperties": {
"folderPath": {
"value": "@{dataset().path}",
"type": "Expression"
}
},
"linkedServiceName": {
"referenceName": "AzureStorageLinkedService",
"type": "LinkedServiceReference"
},
"parameters": {
"path": {
"type": "String"
}
}
}
}
```
### Pipeline parameter JSON (PipelineParameters.json)
```json
{
"inputPath": "adftutorial/input",
"outputPath1": "adftutorial/outputCase1",
"outputPath2": "adftutorial/outputCase2",
"outputPath2": "adftutorial/outputCase3",
"routeSelection": "1"
}
```
### PowerShell commands
[!INCLUDE [updated-for-az](~/reusable-content/ce-skilling/azure/includes/updated-for-az.md)]
These commands assume you saved the JSON files into the folder: C:\ADF.
```powershell
Connect-AzAccount
Select-AzSubscription "<Your subscription name>"
$resourceGroupName = "<Resource Group Name>"
$dataFactoryName = "<Data Factory Name. Must be globally unique>";
Remove-AzDataFactoryV2 $dataFactoryName -ResourceGroupName $resourceGroupName -force
Set-AzDataFactoryV2 -ResourceGroupName $resourceGroupName -Location "East US" -Name $dataFactoryName
Set-AzDataFactoryV2LinkedService -DataFactoryName $dataFactoryName -ResourceGroupName $resourceGroupName -Name "AzureStorageLinkedService" -DefinitionFile "C:\ADF\AzureStorageLinkedService.json"
Set-AzDataFactoryV2Dataset -DataFactoryName $dataFactoryName -ResourceGroupName $resourceGroupName -Name "BlobDataset" -DefinitionFile "C:\ADF\BlobDataset.json"
Set-AzDataFactoryV2Pipeline -DataFactoryName $dataFactoryName -ResourceGroupName $resourceGroupName -Name "Adfv2QuickStartPipeline" -DefinitionFile "C:\ADF\Adfv2QuickStartPipeline.json"
$runId = Invoke-AzDataFactoryV2Pipeline -DataFactoryName $dataFactoryName -ResourceGroupName $resourceGroupName -PipelineName "Adfv2QuickStartPipeline" -ParameterFile C:\ADF\PipelineParameters.json
while ($True) {
$run = Get-AzDataFactoryV2PipelineRun -ResourceGroupName $resourceGroupName -DataFactoryName $DataFactoryName -PipelineRunId $runId
if ($run) {
if ($run.Status -ne 'InProgress') {
Write-Host "Pipeline run finished. The status is: " $run.Status -foregroundcolor "Yellow"
$run
break
}
Write-Host "Pipeline is running...status: InProgress" -foregroundcolor "Yellow"
}
Start-Sleep -Seconds 30
}
Write-Host "Activity run details:" -foregroundcolor "Yellow"
$result = Get-AzDataFactoryV2ActivityRun -DataFactoryName $dataFactoryName -ResourceGroupName $resourceGroupName -PipelineRunId $runId -RunStartedAfter (Get-Date).AddMinutes(-30) -RunStartedBefore (Get-Date).AddMinutes(30)
$result
Write-Host "Activity 'Output' section:" -foregroundcolor "Yellow"
$result.Output -join "`r`n"
Write-Host "\nActivity 'Error' section:" -foregroundcolor "Yellow"
$result.Error -join "`r`n"
```
## Related content
See other control flow activities supported by Data Factory:
- [If Condition Activity](control-flow-if-condition-activity.md)
- [Execute Pipeline Activity](control-flow-execute-pipeline-activity.md)
- [For Each Activity](control-flow-for-each-activity.md)
- [Get Metadata Activity](control-flow-get-metadata-activity.md)
- [Lookup Activity](control-flow-lookup-activity.md)
- [Web Activity](control-flow-web-activity.md)